Skip to main content

Heap Sort

Heap Sort is interesting because the use of the 'heapify' method that creates a binary tree as a flat array. First, a binary tree, also known as a heap, is created, and then the same function is used to sort the elements. In a heap, the first node in the array at zero (0) is the top node of the binary tree. The next two (2) items are the two (2) subnodes of the top node, and so on. For each node at a position (positionIndex), its 2 subnodes are in the following positions:

  • int left = 2 * positionIndex + 1;
  • int right = 2 *  positionIndex + 2;

The CommonMethods.Swap() function is a reusable class, since swapping values by position is a common action during these example sorts.

Class

using System;

namespace Algorithms
{
    class HeapSort
    {
        public int[]  Sort()
        {
            //creates array
            int[] arrayToSort = { 11, 1, 22, 2, 33, 3, 44, 4, 55, 5, 66, 6, 7, 77, 88 };
           
            //creates a heap
            BuildHeap(arrayToSort);

            //sorts a heap
            //takes the largest element @ first position and moves to end
            //reuses the same heapify function, but in reverse, to sort the array
            int size = arrayToSort.Length;
            for (int counter = size - 1; counter > 0; counter--)
            {
                CommonMethods.Swap(arrayToSort, 0, counter);
                HeapifyRecursive(arrayToSort, 0, counter);
            }
            return arrayToSort;
        }

        //a heap, in this case, is a binary tree
        //the largest element is in the first position
        //the next two positions are the 2 subelements of this node, and so on
        //it looks at each element, then reporders them so it maintains the heap structure
        public int[] BuildHeap(int[] arrayToSort)
        {
            int size = arrayToSort.Length;
            int start = (arrayToSort.Length / 2) - 1;
          
            for (int counter = start; counter >= 0; counter--)
            {
                HeapifyRecursive(arrayToSort, counter, size);
            }
            return arrayToSort;
        }

        public void HeapifyRecursive(int[] arrayToSort, int idx, int max)
        {
            int left = 2 * idx + 1;
            int right = 2 * idx + 2;
            int largest;
            if (left < max && arrayToSort[left] > arrayToSort[idx])
            {
                largest = left;
            }
            else
            {
                largest = idx;
            }

            if (right < max && arrayToSort[right] > arrayToSort[largest])
            {
                largest = right;
            }

            if (largest != idx)
            {
                CommonMethods.Swap(arrayToSort, idx, largest);
                HeapifyRecursive(arrayToSort, largest, max);
            }
        }
    }
}

Comments

  1. What about CommonMethods?

    ReplyDelete
  2. in which language did this code write? ı need counting, selection ,heap and bucket sort algoritms , in visual basic. please help me, in 5 days.

    ReplyDelete
  3. This code is C#, and you can take any of the code on this site and convert it via tools like Telerik's Code Convertor, at http://converter.telerik.com/

    ReplyDelete

Post a Comment

Popular posts from this blog

Binary Search

This is the basic divide-and-conquer algorithm, requiring a sorted array. This repeatedly halves the remaining positions to search, until the value is found, or it determines that the value cannot be found. As mentioned, it requires a presorted array, or if unsorted, requires it is sorted. The benefits accrue in instances where the array is sorted once, but searched many times.

On a hypothetical array of 100 items, a linear search has an average performances of O(n/2), or a search of half the positions, 50, to find the item. By comparison, the average performance of Binary Search is O(log n), which for 100 items translates into 4.6, a radically reduced number of iterations, but with greater requirements for logic and memory.

Done in both C#, as an iterative while loop, and F#, as a recursion.

C#
using System; namespace Algorithms { class BinarySearch { public BinarySearch() { } public int Search(int num, int[] arrayToSearch) { …

Bucket Sort

This following uses the divide-and-conquer method of resolution, by dividing the problem into smaller arrays, sorting each smaller array, then reinserting the subarrays back into the original array.  This is not a pure solution, in that it uses the .NET List, rather than a linked list struct.

using System;
using System.Collections;
using System.Collections.Generic;

namespace Algorithms
{
    class BucketSort
    {
        public int[] Sort()
        {   
            //creates arbitrary array
            int[] arrayToSort = { 11, 7, 22, 2, 33, 3, 17, 44, 4, 55, 5, 66, 6, 1, 77 };
            //create bucket using hash, x/10
            List<int>[] bucketList = CreateHashedArray(arrayToSort, 10);
            //sort the bucket list back into the original array
            ReorderList(bucketList, arrayToSort);
            return arrayToSort;
        }

        private int hashFunction(int num, int buckets)
        {
            return num / buckets;
        }

        private List<int>[] CreateHashed…