Skip to main content

Do Algorithms Make You a Better Developer?

Responding to a question on HashNode, Developers who practise algorithms are better at software development than people who just do development. Is it true?, I wrote the following:
My feeling is that algorithms help make one a better programmer, but that is likely true of many coding concepts. I did not have algorithms as an undergraduate, so my knowledge is acquired through reading and practice, but after reading and applying Algorithm's in a Nutshell, I felt the quality of my work improved. That said, my development work increased more after understanding Design Patterns, or after consuming books on database design. 
Since many types of knowledge improve developing and architecting abilities, one has to consider how it helps and to what degree. Algorithms are coding-in-the-small, often narrowly focused solutions, but which can have a great impact at scale. For many applications, a focus on algorithms would be overkill as data sets and requirements do not require it. In this context, any middling programmer can optimize a basic loop for performance. Proper database design, either relational or OLAP/OLTP, will make your applications better, from both maintenance and performance perspectives. Object-oriented programming makes some type of designs better, those that add objects, while learning correct functional programming helps in contexts where you are increasing functions on a limited number of objects. Learning enterprise architecture helps in the design of large scale operations. 
One could equally argue that learning and practicing self-management, communication skills, and code management all make for better programmers, and they do. Ultimately, learning makes one a better developer.

Comments

Popular posts from this blog

Heap Sort

Heap Sort is interesting because the use of the 'heapify' method that creates a binary tree as a flat array. First, a binary tree, also known as a heap , is created, and then the same function is used to sort the elements. In a heap, the first node in the array at zero (0) is the top node of the binary tree. The next two (2) items are the two (2) subnodes of the top node, and so on.  For each node at a position (positionIndex), its 2 subnodes are in the following positions: int left = 2 * positionIndex + 1; int right = 2 *  positionIndex + 2; The CommonMethods.Swap() function is a reusable class , since swapping values by position is a common action during these example sorts. Class using System; namespace Algorithms {     class HeapSort     {         public int[]  Sort()         {             //creates array             int[] arrayTo...

Binary Search

This is the basic divide-and-conquer algorithm, requiring a sorted array. This repeatedly halves the remaining positions to search, until the value is found, or it determines that the value cannot be found. As mentioned, it requires a presorted array, or if unsorted, requires it is sorted. The benefits accrue in instances where the array is sorted once, but searched many times. On a hypothetical array of 100 items, a linear search has an average performances of O(n/2), or a search of half the positions, 50, to find the item. By comparison, the average performance of Binary Search is O(log n), which for 100 items translates into 4.6, a radically reduced number of iterations, but with greater requirements for logic and memory. Done in both C#, as an iterative while loop, and F#, as a recursion. C# using System; namespace Algorithms { class BinarySearch { public BinarySearch() { } public int Search(int num, int[] arrayToSearch) ...

Hash-based Search

An example of a hash-based search, although using dictionaries.  The code is designed to manage lists of Person objects, with unique Id's as the key value, with a rudimentary hash function to assign to various lists. Salient Characteristic(s) Useful for managing large unsorted lists Divides the items into smaller hash-based buckets (divide and conquer) Generally excellent performance Sensitive to the choice of hash function and data structures chosen Note The Id key is not rigorous enough to guarantee uniqueness, and a better key might need to be selected, e.g., SSN, to prevent the same person being entered twice. Code using System; using System.Collections.Generic; namespace Algorithms {     //Example object to add and find in Hash Search example     public class Person     {         private int _Id;         public int Id          {     ...